Algoritma Penjadwalan
(FCFS,SJF,FF)
FCFS (First Come First Served)
Algoritma ini merupakan algoritma penjadwalan yang paling sederhana yang digunakan CPU. Dengan menggunakan algoritma ini setiap proses yang berada pada status ready dimasukkan kedalam FIFO queue atau antrian dengan prinsip first in first out, sesuai dengan waktu kedatangannya. Proses yang tiba terlebih dahulu yang akan dieksekusi.
Contoh
Ada tiga buah proses yang datang secara bersamaan yaitu pada 0 ms, P1 memiliki burst time 24 ms, P2 memiliki burst time 3 ms, dan P3 memiliki burst time 3 ms. Hitunglah waiting time rata-rata danturnaround time( burst time + waiting time) dari ketiga proses tersebut dengan menggunakan algoritma FCFS. Waiting time untuk P1 adalah 0 ms (P1 tidak perlu menunggu), sedangkan untuk P2 adalah sebesar 24 ms (menunggu P1 selesai), dan untuk P3 sebesar 27 ms (menunggu P1 dan P2 selesai).
Gambar 14.1. Gantt Chart Kedatangan Proses
Urutan kedatangan adalah P1, P2 , P3; gantt chart untuk urutan ini adalah:
Waiting time rata-ratanya adalah sebesar(0+24+27)/3 = 17ms. Turnaround time untuk P1 sebesar 24 ms, sedangkan untuk P2 sebesar 27 ms (dihitung dari awal kedatangan P2 hingga selesai dieksekusi), untuk P3 sebesar 30 ms. Turnaround time rata-rata untuk ketiga proses tersebut adalah (24+27+30)/3 = 27 ms.
Kelemahan dari algoritma ini:
- Waiting time rata-ratanya cukup lama.
- Terjadinya convoy effect, yaitu proses-proses menunggu lama untuk menunggu 1 proses besar yang sedang dieksekusi oleh CPU. Algoritma ini juga menerapkan konsep non-preemptive, yaitu setiap proses yang sedang dieksekusi oleh CPU tidak dapat di-interrupt oleh proses yang lain.
Misalkan proses dibalik sehingga urutan kedatangan adalah P3, P2, P1. Waiting time adalah P1=6; P2=3; P3=0. Average waiting time: (6+3+0)/3=3.
Gambar 14.2. Gantt Chart Kedatangan Proses Sesudah Urutan Kedatangan Dibalik
SJF (Shortest Job First)
Pada algoritma ini setiap proses yang ada di ready queue akan dieksekusi berdasarkan burst time terkecil. Hal ini mengakibatkan waiting time yang pendek untuk setiap proses dan karena hal tersebut makawaiting time rata-ratanya juga menjadi pendek, sehingga dapat dikatakan bahwa algoritma ini adalah algoritma yang optimal.
Tabel 14.1. Contoh Shortest Job First
Process | Arrival Time | Burst Time |
P1 | 0.0 | 7 |
P2 | 2.0 | 4 |
P3 | 4.0 | 1 |
P4 | 5.0 | 4 |
Round Robin(RR)
Algoritma ini menggilir proses yang ada di antrian. Proses akan mendapat jatah sebesar time quantum. Jika time quantum-nya habis atau proses sudah selesai, CPU akan dialokasikan ke proses berikutnya. Tentu proses ini cukup adil karena tak ada proses yang diprioritaskan, semua proses mendapat jatah waktu yang sama dari CPU yaitu (1/n), dan tak akan menunggu lebih lama dari (n-1)q dengan q adalah lama 1 quantum.
Algoritma ini sepenuhnya bergantung besarnya time quantum. Jika terlalu besar, algoritma ini akan sama saja dengan algoritma first come first served. Jika terlalu kecil, akan semakin banyak peralihan proses sehingga banyak waktu terbuang.
Permasalahan utama pada Round Robinadalah menentukan besarnya time quantum. Jika time quantum yang ditentukan terlalu kecil, maka sebagian besar proses tidak akan selesai dalam 1 quantum. Hal ini tidak baik karena akan terjadi banyak switch, padahal CPU memerlukan waktu untuk beralih dari suatu proses ke proses lain (disebut dengan context switches time). Sebaliknya, jika time quantum terlalu besar, algoritma Round Robin akan berjalan seperti algoritma first come first served. Time quantum yang ideal adalah jika 80% dari total proses memiliki CPU burst time yang lebih kecil dari 1 time quantum.